Differential movements of VE-cadherin and PECAM-1 during transmigration of polymorphonuclear leukocytes through human umbilical vein endothelium.
نویسندگان
چکیده
Most existing evidence regarding junction protein movements during transendothelial migration of leukocytes comes from taking postfixation snap shots of the transendothelial migration process that happens on a cultured endothelial monolayer. In this study, we used junction protein-specific antibodies that did not interfere with the transendothelial migration to examine the real-time movements of vascular endothelial-cadherin (VE-cadherin) and platelet/endothelial cell adhesion molecule-1 (PECAM-1) during transmigration of polymorphonuclear leukocytes (PMNs) either through a cultured endothelial monolayer or through the endothelium of dissected human umbilical vein tissue. In either experimental model system, both junction proteins showed relative movements, not transient disappearance, at the PMN transmigration sites. VE-cadherin moved away to different ends of the transmigration site, whereas PECAM-1 opened to surround the periphery of a transmigrating PMN. Junction proteins usually moved back to their original positions when the PMN transmigration process was completed in less than 2 minutes. The relative positions of some junction proteins might rearrange to form a new interendothelial contour after PMNs had transmigrated through multicellular corners. Although transmigrated PMNs maintained good mobility, they only moved laterally underneath the vascular endothelium instead of deeply into the vascular tissue. In conclusion, our results obtained from using either cultured cells or vascular tissues showed that VE-cadherin-containing adherent junctions were relocated aside, not opened or disrupted, whereas PECAM-1-containing junctions were opened during PMN transendothelial migration.
منابع مشابه
Endothelial-dependent Mechanisms Regulate Leukocyte Transmigration: A Process Involving the Proteasome and Disruption of the Vascular Endothelial–Cadherin Complex at Endothelial Cell-to-Cell Junctions
Although several adhesion molecules expressed on leukocytes (beta1 and beta2 integrins, platelet endothelial cell adhesion molecule 1 [PECAM-1], and CD47) and on endothelium (intercellular adhesion molecule 1, PECAM-1) have been implicated in leukocyte transendothelial migration, less is known about the role of endothelial lateral junctions during this process. We have shown previously (Read, M...
متن کاملMonocytes Induce Reversible Focal Changes in Vascular Endothelial Cadherin Complex during Transendothelial Migration under Flow
The vascular endothelial cell cadherin complex (VE-cadherin, alpha-, beta-, and gamma-catenin, and p120/p100) localizes to adherens junctions surrounding vascular endothelial cells and may play a critical role in the transendothelial migration of circulating blood leukocytes. Previously, we have reported that neutrophil adhesion to human umbilical vein endothelial cell (HUVEC) monolayers, under...
متن کاملInvolvement of human PECAM-1 in angiogenesis and in vitro endothelial cell migration.
Platelet endothelial cell adhesion molecule (PECAM)-1 has been implicated in angiogenesis, but a number of issues remain unsettled, including the independent involvement of human PECAM-1 (huPECAM-1) in tumor angiogenesis and the mechanisms of its participation in vessel formation. We report for tumors grown in human skin transplanted on severe combined immunodeficiency mice that antibodies agai...
متن کاملADAM10 regulates endothelial permeability and T-Cell transmigration by proteolysis of vascular endothelial cadherin.
Vascular endothelial (VE)-cadherin is the major adhesion molecule of endothelial adherens junctions. It plays an essential role in controlling endothelial permeability, vascular integrity, leukocyte transmigration, and angiogenesis. Elevated levels of soluble VE-cadherin are associated with diseases like coronary atherosclerosis. Previous data showed that the extracellular domain of VE-cadherin...
متن کاملPolymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions
Polymorphonuclear leukocytes (PMN) infiltration into tissues is frequently accompanied by increase in vascular permeability. This suggests that PMN adhesion and transmigration could trigger modifications in the architecture of endothelial cell-to-cell junctions. In the present paper, using indirect immunofluorescence, we found that PMN adhesion to tumor necrosis factor-activated endothelial cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 100 10 شماره
صفحات -
تاریخ انتشار 2002